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Abstract

As multi-core processors become the norm

rather than the exception, multi-threaded pro-

gramming is expected to expand from its cur-

rent niches to more widespread use, in soft-

ware components that have not traditionally

been concerned about exploiting concurrency.

Accessing thread-local storage (TLS) from

within dynamic libraries has traditionally re-

quired calling a function to obtain the thread-

local address of the variable. Such function

calls are several times slower than typical ad-

dressing code that is used in executables. While

instructions used in executables can assume

thread-local variables are at a constant offset

within the thread Static TLS block, dynamic li-

braries loaded during program execution may

not even assume that their thread-local vari-

ables are in Static TLS blocks.

Since libraries are most commonly loaded as

dependencies of executables or other libraries,

before a program starts running, the most com-

mon TLS case is that of constant offsets. This

paper proposes an access model that enables

dynamic libraries to take advantage of this fact,

without giving up the ability to be loaded dur-

ing program execution. This new model was

implemented and tested on GNU/Linux sys-

tems, initially on the Fujitsu FR-V architecture,

and later on IA32 and AMD64/EM64T, such

that performance could be compared with that

of the existing models.

Experimental results revealed the new model

consistently exceeds the old model in terms of

performance, particularly in the most common

case, where the speedup is often well over 2x,

bringing it nearly to the same performance of

access models used in plain executables.

1 Introduction

As mainstream microprocessor vendors turn

to multi-core processors as a way to improve

performance[1, 2], the relevance of multi-

threaded programming to leverage on such po-

tential performance improvements grows.

Besides the common difficulty multi-threaded

programs run into, namely the need for syn-

chronization between threads, it is often the
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case that a thread would like to use a global

variable,1 for extended periods of time, without

other threads modifying its contents, and with-

out having to incur synchronization overheads.

Using automatic variables to achieve this is a

possibility, since each thread has its own stack,

where such variables are allocated. However,

if multiple functions need to use the same data

structure within a thread, a pointer to it must

be passed around, which is cumbersome, and

might require reengineering the control flow so

as to ensure that the stack frame in which the

data structure is created is not left while the data

is still in use.

Widely-used thread libraries have introduced

primitives to overcome this problem, enabling

threads to map a global handle, shared by

all threads, to different values, one for each

thread. This feature is offered in the form

of function calls (pthread_getspecific

and pthread_setspecific, in POSIX[3]

threads), that are far less efficient than access

to global variables and even less efficient than

access to automatic variables. Besides the ef-

ficiency issues, they are syntactically far more

difficult to use than regular variables. These

were the main motivations for the introduction

of Thread Local Storage (henceforth, TLS[4,

5]) features in compilers, linkers and run-time

systems, that enable selected global variables

to be marked with a __thread specifier or a

threadprivate pragma, indicating that, for

each thread, there should be a separate, inde-

pendent copy of the variable.

By using custom low-level thread-specific

implementations[6], or with cooperation from

the compiler and the linker, access to thread-

local variables can be far more efficient than

using the standard functions that offer abstrac-

tions of thread-specific data. In some cases,

1The strictly-correct term here would be variable

whose storage has static duration.

such as when generating code for dynamic li-

braries, the compiler-generated code is still

very inefficient, for reasons detailed in Sec-

tion 2; for main executables, access can some-

times be just as efficient as accessing automatic

or global variables. The mechanisms intro-

duced in Section 3, based on the novel con-

cept of TLS Descriptors[7, 8], yield a major

speedup, that brings the performance of TLS

access in dynamic libraries close to that of exe-

cutables, as shown in Section 4. Section 5 sum-

marizes the results with some final remarks and

future directions.

2 Background

In this paper, we use the term loadable mod-

ule, or just module, to refer to executables, dy-

namic libraries and the dynamic loader. A pro-

cess may consist of a set of loadable modules

consisting of exactly one executable, a dynamic

loader (for dynamic executables) and zero or

more dynamic libraries. We call initial mod-

ules the main executable, any dynamic libraries

it depends upon (directly or indirectly) and

any other dynamic libraries the dynamic loader

chooses to load before relinquishing control to

the main executable. Moreover, we use the

term dlopened modules to refer to modules

that are loaded after the program starts run-

ning, typically by means of library calls such

as dlopen.

Every loadable module may define a memory

address range delimiting its TLS segment. This

range, after relocation processing, contains the

memory image to be used to initialize the TLS

block associated with that module, for each dif-

ferent thread.

For every thread, two data structures are al-

located: a Static TLS Block and a Dynamic

Thread Vector (DTV), as depicted in Figure 1.
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Figure 1: Per-thread data structures used to

support TLS.

A reserved register, called the Thread Pointer

(TP, for short), points to a base address within

that thread’s Static TLS Block. At a fixed rel-

ative location within the Static TLS Block lies

a pointer to the DTV. The DTV, in turn, starts

with a generation counter, followed by point-

ers to TLS Blocks. For every module contain-

ing a TLS segment, a module index is assigned,

that indicates the entry in each thread’s DTV re-

served to hold a pointer to the TLS Block cor-

responding to that module.

The dynamic loader can use information about

the TLS segments of all initial modules to

lay out the Static TLS Block. Each thread’s

static block will contain TLS blocks for all ini-

tial modules. Using the same layout for all

threads implies that the relative locations, in

the Static TLS Block, of the initial modules’s

TLS blocks’s are the same across all threads,

thus enabling not only efficient code generation

for some TLS access models, but also the opti-

mization proposed in Section 3.

2.1 Access Models

If a main executable contains a TLS segment,

the dynamic loader not only reserves the first

entry in the DTV for it, but also lays out the

Static TLS Block in such a way that the offset

from the TP to the executable’s TLS block is

a constant computable at link time. The exact

location of the executable’s TLS block within

the Static TLS Block only depends on the size

and alignment requirements of the executable’s

TLS segment, and conventions set by the Ap-

plication Binary Interface (ABI) of the hard-

ware architecture and operating system. Since

the linker can compute the offset from the TP

to the executable’s TLS block, and the relative

location of a variable defined within this block,

it can compute the exact TP offset of such a

variable (say, variable x in Figure 1), and use

that as a displacement from the TP to access the

variable. This access model is known as Local

Exec. It is the most efficient, but least general,

access model, since only the main executable

can use it. In theory, all initial modules could

use it, but this would require text segments to

be modified at dynamic relocation processing

time, and modifying text segments is highly un-

desirable, mainly because it prevents page shar-

ing across multiple processes, which is what

shared libraries are supposed to enable.

An example of computing the address of a vari-

able var into register reg using the Local

Exec access model, in low-level pseudo code,

is given below. TPoff is a functional notation

to denote the TP offset of a variable.

let reg← TP + TPoff(var)

Accessing thread-local variables that are not

defined in the main executable preclude the use

of the Local Exec access model. The main ex-

ecutable, however, can still take advantage of

the fact that every dynamic library it depends

on, that might provide the variable it wants to

access, is an initial library, and therefore its

relative location within the Static TLS Block

is a run-time constant, which holds for vari-

ables x and y in Figure 1. Emitting a reloca-

tion to get the dynamic loader to compute this

run-time constant and store it into a Global Off-

set Table (GOT) entry, and using this constant,

loaded from the GOT, as an offset from the TP
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to access the variable, is called the Initial Exec

access model. Under certain circumstances, it

may be used in dynamic libraries as well, but it

may come at the cost of being unable to dlopen

such libraries. The use of indirection through

the GOT, allocated in the data segment, not

only retains the ability to share pages of code,

but also merges all the dynamic address com-

putation related with a symbol into a single lo-

cation, reducing the number of dynamic reloca-

tions needed.

An example of computing the address of vari-

able var into register reg using the Initial

Exec access model follows. GOT, in such low-

level pseudo code, denotes a reserved regis-

ter or some PC-relative addressing mode that

yields the GOT base address. GOTTPoff de-

notes the offset of a GOT entry that, at run time,

will hold the TP offset of a variable.

load reg, GOT[GOTTPoff(var)]

let reg← TP + reg

The other two access models, General Dynamic

and Local Dynamic, require the (implicit) use

of the DTV. Both access models involve call-

ing a function, normally called __tls_get_

addr, to obtain a thread-local address. Func-

tion __tls_get_addr requires two pieces

of information to compute the requested ad-

dress: a Module Index and an Offset within

the module’s TLS segment, as depicted in Fig-

ure 1 for variable z. These two pieces of infor-

mation are normally computed by the dynamic

loader, in response to relocation entries that re-

quest them to be stored in the GOT. An exam-

ple of the use of the General Dynamic access

model is given below, using adjacent GOT en-

tries and passing it by reference in a register.

Other implementations use independent GOT

entries for the two values, and/or pass them by

value. GOTModIdx\&Off is a functional no-

tation to denote the offset of a GOT entry that,

at run time, will hold a Module Index followed

by a corresponding Offset.

let reg← GOT + GOTModIdx&Off(var)

call __tls_get_addr

Local Dynamic is a variant of General Dynamic

that calls the function to compute a base ad-

dress, normally by passing the function a zero

offset. Having obtained the base address of

a module’s TLS block with a single call, the

Local Dynamic access model then uses vari-

ables’s offsets to access them using the same

base address. The offsets can all be computed

by the linker, since they are a local property

of the module. An example follows, in which

GOTModIdx denotes the GOT offset for an en-

try that, at run time, will hold the Module Index

and a zero offset, and ModOff represents the

Offset of a given variable.

let reg← GOT + GOTModIdx()

call __tls_get_addr

let reg1← reg + ModOff(var1)

let reg2← reg + ModOff(var2)

2.2 Dynamic behavior

At thread creation time, the DTV is initialized

such that every entry corresponding to an ini-

tial module points to a TLS block within the

Static TLS Block, like the second and third

slots in the DTV in Figure 1, and all other en-

tries are marked as not allocated, like the fourth

slot. Entries for dlopened modules have to be

assigned on demand to TLS blocks allocated

dynamically, as depicted by the two Dynamic

TLS Blocks in the figure. Dynamic allocation

is necessary because multiple threads may al-

ready be running at the time a new module is

loaded into a process. Function __tls_get_

addr is responsible for the run-time mainte-

nance of the DTV.
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The generation counter in the DTV is used to

keep track of such dynamically-allocated TLS

blocks: every time a dlopened module with a

TLS segment is loaded or unloaded, a global

generation counter is incremented. Function

__tls_get_addr checks whether the DTV

generation counter is up to date every time it is

called. If the DTV is found to be out of date,

the function may have to release the memory

associated with its outdated entries, to dynami-

cally resize it, and to set any released or newly-

created entries to the unallocated state.

Once the DTV is up to date, if function __

tls_get_addr finds that the requested DTV

entry is not allocated, it allocates the necessary

storage, initializes it with the contents of the

TLS segment from the corresponding module

and sets the DTV entry to the allocated address.

At last, it loads the module’s TLS block’s base

address from the corresponding DTV entry and

adds to it the variable offset it was passed as

argument, returning the result.

3 Optimization

Let us first investigate why __tls_get_

addr is perceived as so slow, and then proceed

to introducing the optimization subject of this

paper.

3.1 Inefficiencies in __tls_get_addr

It might seem that the dynamic access models

should not be so expensive, since in the most

common case, the run-time behavior of func-

tion __tls_get_addr will involve two test-

and-branch sequences, with branches predicted

not taken, followed by offsetting the base ad-

dress already loaded for the second test by the

amount given as an argument, as in the low-

level pseudo code below. DTVoff denotes the

offset from the TP to the DTV address stored

in the Static TLS block; DTVGCoff, the rel-

ative location of the generation counter in the

DTV, normally 0; DTVentrysize, the size

of a DTV entry; arg1 and arg2, the module

index and the offset, respectively; result, the

register in which __tls_get_addr returns

its result.

load reg1← TP[DTVoff]

load reg2← generation_counter

branch to slow path 1 if reg1[DTVGCoff] < reg2

load reg2← reg1[arg1 × DTVentrysize]

branch to slow path 2 if reg2 == UNALLOCATED

let result← reg2 + arg2

return

The first test, however, involves a global vari-

able, the global generation counter. Accessing

a global variable can be relatively expensive in

such a simple function, since it may require set-

ting up the GOT register to compute its address,

if PC-relative addressing is not available.

A bigger performance penalty follows from the

compiler’s inability to shrink-wrap functions[9,

10], namely, to avoid saving and restoring reg-

isters, and even setting up a stack frame, in

the fast path that issues no function calls and

needs only two scratch registers. Since the slow

paths issue function calls, compilers will gener-

ally set up a stack frame for the entire function,

and since such paths are complex, possibly re-

quiring multiple registers, several such registers

have to be saved and restored every time the

function is called, even though they are seldom

actually used.

Although some register saving and restoring

performance can be recovered by means of

shrink-wrapping, compilers cannot help the

fact that the definition of __tls_get_addr,

in the dynamic loader, is publicly visible and

not actually known before run time, so the

compiler must assume it complies with the
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platform-defined calling conventions. ABI-

defined custom calling conventions for this

function could shift into the __tls_get_

addr slow path the penalties involved with

preserving registers that would otherwise have

to take place in its callers.

Yet another performance penalty is related with

the fact that __tls_get_addr is always

called through Procedure Linkage Table (PLT)

entries. Since it is defined in the dynamic

loader, calls to it in other modules have to go

through such an entry that loads the actual func-

tion address from the GOT and then jumps to it.

Without such inefficiencies, the instruction se-

quence above would be observed at run time.

However, with all the inefficiencies, the dy-

namic instruction trace after an instructions that

calls __tls_get_addr is as follows. Addi-

tional instructions, not present above, are em-

phasized. GOToff(sym) denotes the offset

from the GOT to the address of symbol sym.

jump to address loaded from PLT GOT entry

set up stack frame

save call-preserved registers used in slow path

save and set up GOT register if needed

load reg1← TP[DTVoff]

load reg2← GOT[GOToff(generation_counter)]

branch to slow path 1 if reg1[DTVGCoff] < reg2

load reg2← reg1[arg1 × DTVentrysize]

branch to slow path 2 if reg2 == UNALLOCATED

let result← reg2 + arg2

restore registers

destroy stack frame

return

Even if the compiler could be improved so as

to avoid setting up a stack frame, the GOT-

relative addressing mode to access the gener-

ation counter is unavoidable. As for the PLT

entry, the additional jump could be avoided by

using a call sequence in __tls_get_addr

callers that referenced its GOT entry directly,

precluding lazy relocation of this reference and,

most often, requiring larger code size at all

call sites, negatively impacting the instruction

cache efficiency.

3.2 TLS Descriptors

From the previous paragraph, it would seem

that improving the performance of the dynamic

access models would not involve a change in

the access models themselves, but rather in the

compiler used to compile __tls_get_addr.

It is possible, however, to make them more

efficient, by introducing specialized versions

thereof for different situations, and by provid-

ing such specialized versions with additional

information. Let us put aside for a moment the

issue of how to get the most appropriate spe-

cialized version selected efficiently, and con-

centrate on the potential benefits first.

3.2.1 Improving Static TLS

One major shortcoming of __tls_get_

addr is that it fails to take advantage of the

fact that, to access the TLS block for an ini-

tial module, no tests are necessary. Since ini-

tial modules’ TLS blocks are laid out as part of

Static TLS Blocks, all threads’ DTVs already

contain the correct addresses in the entries cor-

responding to such modules, so it would suffice

to dereference the DTV and add the variable

offset.

However, it is possible to do even better in the

Static TLS case: since the initial module’s TLS

block is at an offset from the TP that is the same

for all threads, we can use the provision above

of passing additional information to the special-

ized function and pass it this constant TP offset,

instead of the then-unused module index. Thus,

all this specialized function has to do is to add
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the module’s TP offset to the TP, and then to

the variable offset.

In a further step, this specialized function could

take as arguments, instead of the TP offset and

the variable offset, the precomputed result of

adding them together. This specialized function

is thus reduced to the following pseudo code:

let result← TP + arg

return

Selecting this specialized function reduces sig-

nificantly the computation performed in the

function, rendering its performance very simi-

lar to that of the Initial Exec or even Local Exec

models, discounting the function call overhead.

The use of this specialized version is the most

significant improvement we have introduced,

but there are additional minor improvements to

follow.

One important point to consider is that all spe-

cializations must present the same interface,

such that callers are totally unaware of which

specialization is selected; such selection takes

place at run time, at which point it is undesir-

able to modify code. Therefore, when we mod-

ify the interface of a specialization so as to take

a single argument, we are either determining

that none of the specializations can take more

than one argument, or that this one specializa-

tion will ignore any additional arguments other

specializations might require.

3.2.2 Returning TP offsets

On some architectures, register-plus-register

indirect addressing modes is little or no more

expensive than indirect addressing modes. On

Fujitsu FR-V, for example, there is no single-

register indirect addressing mode: loads and

stores compute the address by adding a regis-

ter to either another register or a constant dis-

placement. On IA32 and AMD64/EM64T, on

GNU/Linux, segment registers are used as TP,

so an instruction with a single-register indirect

addressing mode can be modified to use this

register as an offset from the segment base ad-

dress by using a 1-byte prefix, with no signifi-

cant performance penalty.

On such architectures, it makes sense to ar-

range for the function to return not the address

of the variable, but rather its TP offset. If it is

also possible to arrange for the argument to be

passed in the register used to hold return values,

then the specialization optimized for Static TLS

becomes a single return statement, as on FR-V.

On IA32 and AMD64/EM64T, it could be pos-

sible to achieve the same, but at the expense

of additional code at every call site to load the

argument from memory. Thus, it is more effi-

cient, in terms of code size, to leave it up to the

specialized function to load it before returning.

3.2.3 Linker relaxations

TLS-related relaxations are always defined so

as to turn accesses using dynamic access mod-

els into Initial Exec or Local Exec, when link-

ing an executable. In general, the __tls_

get_addr call sequence, including the in-

structions that set up the arguments, has to con-

tain padding such that, if the linker relaxes the

code to a more efficient access model, there is

room for the instruction that adds the TP and

the TP offset, regardless of whether it is the Lo-

cal Exec link-time constant or the Initial Exec

run-time constant loaded from the GOT.

The convention of returning the TP offset in-

stead of the actual address simplifies linker re-

laxations, because the addition of the TP does

not have to fit in the replacement sequence: it is
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already there, after the call sequence. So it suf-

fices to arrange for the value loaded from the

GOT, or the fixed constant used in Local Exec,

to make it to the register in which the call would

have returned the TP offset. With the reduced

padding, code size is reduced, improving the

efficiency of the instruction cache.

3.2.4 Avoiding unnecessary DTV updates

The use of a global variable, namely the gener-

ation counter, when testing whether a DTV is

up to date, is not only a bad idea because of the

potential performance hit associated with sav-

ing, setting up and restoring the GOT register.

The fact that some thread A may choose to

dlopen or dlclose a module a may slow down

another thread B that accesses TLS variables

from module b. This occurs because the test in

__tls_get_addr checks whether the DTV

is up to date, and not whether it is recent

enough to access a variable in the requested

module.

While indexing some TLS module table to de-

termine the generation count associated with

a module could be feasible, it would signifi-

cantly slow down the fast path. However, with

our provision of passing additional information

to the specialized functions, we can arrange to

have the minimum generation count needed to

access a module’s TLS passed to a specialized

function used to handle Dynamic TLS.

Since we have arranged for the Static TLS spe-

cialization to use a single argument, we can do

the same for the Dynamic TLS specialization

at hand. Since there is no way to avoid the re-

quirement for the module index and the offset,

however, in order to fit all this information in

a single argument, the only solution is to use

indirection.

Since Dynamic TLS is designed to be the rare

case, allocating additional storage for refer-

ences to such variables is not deemed unaccept-

able, so what we do here is to arrange for the

Dynamic TLS specialization to be passed, as

its argument, a pointer to a data structure con-

taining not only the module index and the off-

set, but also the generation counter needed by

the module. The specialized function can thus

avoid the need for the GOT register in the fast

path, using for the test the generation counter

stored in this data structure passed as its argu-

ment, also avoiding DTV updates that would

not affect its ability to access the requested

module.

On Fujitsu FR-V, a particular detail of the

ABI[11] required an additional field in this data

structure. The ABI requires the GOT register

to be set up for a function not by the function

itself, but rather by its caller. Since no special-

izations of TLS calls would require the GOT

register in their fast paths, we have arranged for

the argument data structure to contain the GOT

pointer the specialization may need.

An additional micro-optimization, applied on

FR-V, is to arrange for this data structure to

contain not the module index, but rather the

offset into the DTV where its entry is stored.

This saves a shift-left instruction in the fast path

of the specialized function, because FR-V does

not have an addressing mode that adds an in-

dex register multiplied by a constant to a base

register.

3.2.5 Specialized calling conventions

The IA32 version of __tls_get_addr on

GNU/Linux has traditionally used custom call-

ing conventions in that its arguments are not

passed on the stack, as usual, but rather on reg-

isters. This should also be the case of special-

izations of this function.
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Besides specifications of where arguments are

passed and where return values are stored, an-

other important aspect of calling conventions

is that of defining which registers a function

can modify without preserving (caller-saved or

call-clobbered), and which have to be saved be-

fore they can be modified (callee-saved or call-

preserved).

The most common TLS cases in code compiled

for dynamic libraries, namely Static TLS spe-

cialization and relaxation for main executable,

can assume that, in a TLS call instruction or its

replacement, no register is modified other than

the one holding the resulting address or TP off-

set.

Only the Dynamic TLS specialization needs a

pair of temporary registers for the fast path, and

potentially several other registers for the slow

path.

Since in this work we are defining a new inter-

face for __tls_get_addr specializations,

we might as well define the conventions regard-

ing preserved registers to privilege the most

common cases. We have thus defined that

the specializations are to preserve all regis-

ters other than the return value, such that TLS

calls can be modeled like simple loads, en-

abling the full register set to be used without

concerns about preserving registers across such

calls. This requires that, when the slow path

of the Dynamic TLS specialization issues calls

to other functions, it preserves all registers that

they might modify. Since it is the slow path,

and it has so much work to do anyway, this ad-

ditional work is insignificant. Unfortunately,

this decision also affects the fast path, in that

it has to preserve the two scratch registers it

needs, but since Dynamic TLS is assumed to

be the uncommon case, privileging the Static

TLS case is a reasonable decision.

3.2.6 Selecting specializations at run time

Now that we have established that both special-

izations work with a single argument, and de-

fined that they should use customized calling

conventions to do their jobs, we are ready to

specify how the appropriate specialization is to

be selected and called.

In the existing dynamic access models, two

GOT entries are needed to hold the arguments

to __tls_get_addr. Since for the special-

ized versions we can use only one, we can use

the other to hold the address of the specialized

function. Then, we arrange for the code, that

used to call __tls_get_addr, to call the

function whose address is stored in that loca-

tion.

As a general rule, we can store the function ad-

dress at the GOT entry that would, in the tra-

ditional access model, contain the module in-

dex, and the argument to the function, in the

GOT entry that would contain the variable off-

set. Since, for a given module, the decision on

whether its TLS block can be accessed with the

Static or the Dynamic specialization is the same

for all variables in the block, this general rule

works even for ABIs that enable the module in-

dex and the variable offset to be in non-adjacent

entries, with potential use of the module index

entry to access multiple variables.

The machines on which the new access model

was implemented, however, all use adjacent

GOT entries, since they make the code much

simpler, at the expense of additional GOT space

due to the multiple copies of the the same mod-

ule index. Nevertheless, the absence of such

sharing enables lazy processing of relocations,

as detailed in Section 3.2.8. When the entries

are adjacent, they form a data structure that we

call TLS Descriptor, named after Function De-

scriptors, present in ABIs such as IA64’s[12],

PPC64’s[13] and FR-V’s[11], that contain a
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Figure 2: General structure of a TLS Descrip-

tor, with 3 different specialization types, for

Static and Dynamic TLS, and Lazy TLS that

decays to one of the other two on the first use.

function’s entry point and a context pointer,

e.g., the GOT pointer to be used by the func-

tion. TLS descriptors also take two words, but,

instead of a context pointer, their second word

contains an argument to the function whose

pointer is in the first word, as depicted in Fig-

ure 2.

Fujitsu FR-V has never had a traditional TLS

ABI, since it was already designed taking ad-

vantage of the new access model, but we can

imagine that, if it had, the instruction sequence

would be as follows.

sethi.p #gottlsgdhi(var), gr8

setlo #gottlsgdlo(var), gr8

ldd #tlsgd(var)@(gr15, gr8), gr8

call __tls_get_addr

The ldd instruction loads into the pair of regis-

ters starting at gr8 the pair of words starting at

the address obtained by adding gr15, the GOT

pointer, and gr8, whose value was set to the

linker-computed displacement for the GOT en-

try containing the module index and the vari-

able offset. In the actual FR-V TLS ABI, the

call sequence is as follows.

sethi.p #gottlsdeschi(var), gr8

setlo #gottlsdesclo(var), gr8

ldd #tlsdesc(var)@(gr15, gr8), gr8

calll #gettlsoff(var)@(gr8, gr0)

The variation here is mainly from relocations

that reference a TLS Global Dynamic GOT en-

try to those that reference a TLS Descriptor

GOT entry, and the last instruction, that is a call

to a named function in the former, that goes

through a PLT entry, and a call to a given ad-

dress in the latter, that goes straight to the spe-

cialization. The address was loaded into gr8;

gr0 is fixed at zero.

On GNU/Linux IA32, the difference is a bit

more significant. The current TLS ABI speci-

fies the following sequence for the General Dy-

namic access model.

leal var@TLSGD(,%ebx,1), %eax

call ___tls_get_addr@PLT

This uses an extraneous addressing mode for

leal, equivalent to (%ebx), but longer, mak-

ing the instruction long enough for the relax-

ation replacement, that takes 12 bytes. Our ver-

sion, however, is as short as 8 bytes for the

call sequence, although it requires an additional

byte for the segment prefix to the load or store

instruction that uses the resulting offset.
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leal var@TLSDESC(%ebx), %eax

call *var@TLSCALL(%eax)

Note that var@TLSCALL is just an annota-

tion to aid linker relaxations, such that the two

instructions can be scheduled apart. The ac-

tual instruction encoding is the two-byte indi-

rect call, that calls the function at the address

stored at the memory location whose address

was computed into %eax by the leal instruc-

tion. The called specialization knows that, at its

entry point, %eax points to the TLS descriptor,

so it can load its argument from the descriptor.

On AMD64/EM64T, the original call sequence

contains several meaningless padding prefixes

to make room for relaxation substitutions, as

follows.

.byte 0x66

leaq var@TLSGD(%rip), %rdi

.word 0x6666

rex64

call __tls_get_addr@PLT

Our improved call sequence follows the very

same pattern as IA32, with the difference that

GOT accesses do not involve a fixed register,

but are PC-relative, and register and addresses

are 64-bits wide. While the above takes 16

bytes, the following takes as little as 9, plus one

for the byte prefix in actual accesses.

leaq var@TLSDESC(%rip), %rax

call *var@TLSCALL(%rax)

3.2.7 DTV compression

When this new access model is used, and the

traditional one is not (i.e., __tls_get_addr

is never called directly), it is possible to remove

all static entries from the DTV, since they are

never used. Since we know that every access to

Static TLS will go through the static specializa-

tion, that does not use the DTV, entries for such

modules can be entirely removed, enabling the

initial DTV to be trivially set up.

This offers a slight speed up in thread creation

for processes that have multiple initial modules

with TLS segments, potentially saves memory

by delaying the need for dynamically growing

the DTV, and enables the DTV to be reduced

by half, since its current definition reserves a

word in every entry to tell whether it is static

or dynamic when the time comes to release that

entry and free up its storage.

Even when the traditional dynamic TLS ac-

cess model is used, it is possible to enable this

DTV compression, as long as the index range

reserved for initial modules can be easily dis-

tinguinshed from that of dlopened modules, for

example, by having the most significant bit set.

__tls_get_addrwould then have to recog-

nize this case and use an alternate code path

that, instead of relying on the DTV, obtained

the module’s constant TP offset from a separate

table.

3.2.8 Lazy relocations

Processing relocation entries lazily enables sig-

nificant speedups in start-up time for applica-

tions. The mechanism consists in performing a

very quick pass over relocations that can be re-

solved lazily (something that can be determined

by the linker), setting them up such that, only

when they are used for the first time are they

actually resolved.

This has traditionally been used to resolve func-

tion addresses in dynamic linking. A call to

a function that does not bind locally (i.e., that

may be resolved to a definition in a separate

module) is directed to go through a PLT entry,
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that loads an address from the GOT and jumps

to it.

In the first pass, the dynamic loader sets these

GOT entries to point to a stub that calls the dy-

namic resolver with enough information for it

to identify the relocation that it should resolve

at that time.

The dynamic resolver applies the relocation,

modifying the GOT entry such that subsequent

calls go straight to the actual function, and then

transfers control to the function that should

have been called, as if it had been called di-

rectly.

Although lazy relocation processing is very of-

ten applied to function calls, it is never applied

to data accesses, since there is no transfer of

control involved, and introducing it would ren-

der the access model too costly in terms of per-

formance.

In our optimized dynamic access model, how-

ever, there is a control transfer, and we realized

we could use that to enable lazy relocation pro-

cessing. In the quick pre-relocation pass, the

function address in the TLS descriptor is set to

another specialization that handles lazy reloca-

tion, and the argument is set so as to point to

the relocation itself.

When the function is called, it resolves the sym-

bol the relocation refers to, decides whether to

use the Static or Dynamic specialization and

sets up the TLS descriptor according to the de-

cision, such that subsequent calls involving the

same TLS descriptors go straight to the most

efficient specialization.

Care must be taken to ensure that the TLS de-

scriptor is never in a state that, should another

thread perform an access using it, will yield an

incorrect result.

On FR-V, that is not very difficult, since the in-

structions that read and store a pair of words

are atomic given sufficient alignment. On IA32

and AMD64/EM64T, however, there is no in-

struction that can read or modify a pair of words

atomically. Since requiring every call site to

use synchronization would be too costly, a solu-

tion was devised that requires synchronization

only in the lazy relocation function itself.

The lazy relocation specialization first acquires

a dynamic loader lock and verifies that the TLS

descriptor still points to itself. If so, it modifies

it so as to point to a hold function and reads the

argument. At that point, it can release the lock

and compute the final value of the TLS descrip-

tor, using the argument read while the lock was

held.

Before modifying the descriptor, it acquires the

lock again, wakes up any threads that might be

waiting for it in the hold function (using say

a condition variable), finally releasing the lock

and transferring control to the function whose

address was stored in the TLS descriptor.

The hold function simply acquires the lock and,

in a loop, tests whether the TLS descriptor still

points to it and, if so, waits on the condition

variable until it is signaled, otherwise, it re-

leases the lock and transfers control to the func-

tion specified in the TLS descriptor.

A simpler, yet less scalable, alternate design

for the hold function, that does not involve

condition variables, relies on the lock alone:

the lazy relocation function does not release

the lock throughout its operation, and the hold

function is as simple as acquiring the lock, re-

leasing it and transferring control to the func-

tion specified in the TLS descriptor. This de-

sign is quite appropriate when the relocation-

processing code in the dynamic loader already

requires a lock to be held, as it is the case in

GNU libc.
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4 Performance

Verifying any actual performance improve-

ments provided by the optimizations intro-

duced herein proved to be a major challenge.

To the best of our knowledge, the only library

that makes heavy use of Thread Local Storage

is GNU libc itself. To make matters worse,

GNU libc takes advantage of the fact that its

dynamic loader and C library are always loaded

initially, and thus they use the Initial Exec ac-

cess model throughout the libraries offered by

GNU libc, ensuring that any thread-local vari-

ables accessed with this access model are lo-

cated in one of these two libraries.

Even forcing GNU libc to not use the Ini-

tial Exec access model and running the Native

Posix Thread Library (NPTL[14]) performance

benchmark to evaluate the benefit of the opti-

mization to this benchmark showed no differ-

ence whatsoever. Investigation showed that this

benchmark called __tls_get_addr only a

handful of times during a test run that took tens

of seconds, so performance differences could

not possibly be exposed by this benchmark.

The main reason as to why the thread perfor-

mance test did not use dynamic access models

very often is that, first of all, it did not exer-

cise thread-local storage access itself and, even

if it did, it is a main application, not a dy-

namic library, so dynamic models do not apply.

As for the libraries it uses, GNU libc’s C and

thread libraries maintain information pertaining

to threads in the thread’s static TLS block, and

access it using a model similar to Local Exec,

so they are not affected by the choice to not use

the Initial Exec model within libc.

Although Gomp[15], the implementation of

OpenMP[16] for the GNU toolchain, has very

recently become a viable platform for mea-

suring TLS performance, the SPEC OMP2001

benchmark uses threadprivate variables

in only one of its tests, and even then, not in

a dynamic library, so using this benchmark was

not viable either, and we were left with the need

for creating synthetic microbenchmarks.

We have created a total of 40 tests for our

benchmark, such that every test is represented

as a function that returns a result that is some-

how related with one or more thread-local vari-

ables, with variations in 4 different dimensions,

described in the following paragraphs.

Operation Half of the tests compute the ad-

dress of a thread-local variable (addr), whereas

the other half computes the actual value stored

in the thread-local copy of the variable (load).

This exposes differences related with the ef-

ficiency of accessing a thread-local variable

without explicitly adding the thread pointer to

its relative location. On all tested CPUs, the

TP register is a special register whose contents

cannot be read or modified from userland. It

can be used as a base register to read or mod-

ify a thread-local variable, but computing the

address of a variable requires loading the regis-

ter’s value from a reserved location in the Static

TLS block.

Timing All of the timing is performed using

the clock tick counting instructions available

on the CPUs we’ve used for testing. Half of

the test functions time their operation by them-

selves (Internal), storing the number of clock

ticks elapsed while performing the operation in

a pointer passed in as an argument. The other

half perform no timing whatsoever, relying on

their callers to obtain the clock tick count for

the entire call (External). Unlike the previ-

ous dimension, that intends to expose differ-

ences, this one intends to confirm the perfor-

mance improvements we’ve achieved, by offer-

ing multiple performance measures of different

but functionally-similar code.
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The confirmation was not straightforward,

though; the little room for scheduling in the in-

ternal timing variants and the high pressure on

the registers used by both the timing instruc-

tions and function call return values would cre-

ate pipeline bubbles that, without care to avoid

such worst-case conditions (unlikely to occur in

real life), would have made some tests that per-

form very little work appear to be slower than

some that perform much more work.

Access model We have four different kinds

of tests in this dimension, in which knowledge

about the location of the thread-local variable

used varies, plus one kind of test that combines

access to multiple variables.

Half of the single-variable tests use Initial Exec

access models, but in half of these, the compiler

generated Initial Exec code because it was told

the variable was in Static TLS (OIE, for origi-

nal IE); in the other half, the compiler was told

the variable was in Dynamic TLS, so it gener-

ated General Dynamic code, and then the linker

relaxed that to Initial Exec, being aware of the

Static TLS location of the variable (RIE, for re-

laxed IE).

The other half of the single-variable tests use

General Dynamic access models. In half of

these, the variable is in Static TLS, so our main

optimization kicks in (SGD, for static GD); in

the other half, the variable is in Dynamic TLS,

so the main optimization does not apply (DGD,

for dynamic GD).

The multi-variable tests (Cmb, for combined)

subtract the values or addresses of the RIE and

the SGD variables, and adds the value or ad-

dress of the DGD variable, returning the result.

All this work grants the compiler more oppor-

tunity to hide the latency of certain operations

through instruction scheduling.

Local State Half of the test functions are so

simple that, when they have to call __tls_

get_addr or equivalent, any automatic vari-

ables of their own can easily be assigned to call-

preserved registers, so the optimized calling

conventions suggested in this paper show no

benefit whatsoever (Min St). In order to expose

such benefits, the other half of the test func-

tions contain a large number of automatic vari-

ables (Max St) whose contents are forced into

registers before and after the TLS operation,

such that, with the standard calling conven-

tions, almost all call-clobbered registers have

to be spilled before the call and reloaded after

it, whereas with our optimization, none of this

takes place.

The number of variables is chosen such that

all but one of the general-purpose registers are

taken up by these variables. On IA32, we use

5 such variables, considering that %ebx is re-

served as the GOT pointer, and that %ebp can

be used as a general-purpose register, making

up for 6 available registers, 3 call-saved, 3 call-

clobbered. On AMD64, we use 14 such vari-

ables, since %esp is not really usable in the

16-register set. On both CPUs, we keep one

register available to hold the result of the TLS

operation, with the explicit intention of show-

ing a worst-case scenario for the traditional

code, where the advantages of the custom call-

ing conventions would be greatest. The actual

benefit from this change will be somewhere in

between the two variants in this dimension.

The 40 combinations of the above variations

are all located in a dynamic library that is

dlopened by the main benchmark program.

This ensures that the test functions do not get

inlined into the main benchmark loop, which

might enable hoisting of operations, making

operations look faster than they are.

We build two such dynamic libraries for each

tested architecture: one created with the com-
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piler configured to generate code in the tra-

ditional way (Ol), another following our new

proposed method (Nu). A full test run goes

through all 40 tests for each of the 2 libraries,

which makes up for the 80 tests total.

Every test is run a large number of times, in two

different configurations. In one configuration,

we run each one of them in a tight loop to then

proceed to the next test; in the other, each test

is run once in a randomized sequence generated

for every iteration in a loop. More details are

given below.

Although running the tests in a tight loop has

enabled us to initially measure a lower bound

for the execution time of each test, such lower

bound was initially not thought to be very rep-

resentative of real-life performance, since it de-

pends heavily on hot caches and nearly-perfect

branch and call/return prediction, something

that is not necessarily expected in practice.

In order to try to obtain more representative

results, we collect all of the tests into a vec-

tor and then, for every iteration in the main

benchmark loop, we get the vector sorted at

random and then iterate over the randomized

vector, running each test once per iteration in

the main loop. Each test run produces a time

result that is immediately logged to a file. This

logging and randomization helps avoid getting

cache, branch and call/return prediction hits

too common for any single test, which enables

us to achieve moderately reproducible results

with thousands of runs of each test, as opposed

to hundreds of millions that we needed in the

tight-loop test. It often (but not always) gets

us identical per-iteration lower bounds, but the

average run times no longer tend to the lower

bound as the iteration count increases.

Unfortunately, this randomization, and the pos-

sibility of long interrupts and context switches

that could skew averages up at random, have

caused average times over 1 million runs to

vary by as much as 30%, even after discarding

values that appear to be too high.

That said, in spite of the significant error mar-

gin in the exact averages, we’ve verified that

there appears to be a strong correlation between

improvements in minimum times, as measured

in the tight loop, and improvements in the aver-

age times, although speedups tend to be smaller

for averages than for minimums.

Given this correlation and the irreproducibil-

ity of the exact average results, we’ve decided

to not include the average times in the pa-

per. Since binaries and the complete source

code of the implementation, including the

benchmark program that can generated them,

are available for download at http://www.

lsd.ic.unicamp.br/~oliva/, publish-

ing only the minimum times, that are perfectly

reproducible, was deemed enough.

4.1 Analysis

Testing procedure was as follows. A toolchain

was built on Fedora Core 4, based on snapshots

of the GCC and GNU binutils development

trees taken on Oct 30, 2005. This toolchain was

capable of generating code for both IA-32 and

AMD64, selecting the old or the new TLS call

sequences through a command-line switch. A

development snapshot of GNU libc, taken on

the same day, was built using this compiler for

both IA-32 and AMD64. The IA-32 version

was built with optimizations for Pentium II or

newer; the AMD64 version was built with de-

fault settings. The benchmark program and li-

braries were built with the same settings.

The benchmark program was run on 3 different

environments, each one described in the cap-

tion of the corresponding table: a Pentium III

processor ran the 32-bit benchmark (Table 1),
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Internal Timing External Timing

Acc Min St Max St Min St Max St

Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 33 33 37 37 48 48 58 58

addr 33 33 38 38 45 45 55 55

RIE
load 35 35 40 38 50 50 61 60

addr 34 34 39 37 48 50 62 59

SGD
load 64 39 67 43 77 53 88 64

addr 63 39 67 43 76 53 87 64

DGD
load 64 58 67 58 77 67 90 78

addr 63 53 68 58 76 67 87 76

Cmb
load 104 63 108 77 110 78 131 100

addr 94 64 101 69 113 78 123 90

Table 1: Minimum run times, in CPU cycles,

over 100000000 iterations on a Pentium III

Speedstep 1.0GHz (32-bit only). The timing

overhead, included in the figures above, was

measured as 33 CPU cycles.

and an Athlon64 processor ran both the 32-

bit (Table 2) and the 64-bit (Table 3) bench-

marks. In all cases, the processors were con-

figured to avoid clock speed switching, and the

boxes were very lightly loaded, except for the

benchmark program. The results were mechan-

ically converted to LATEX tables.

Figures 3, 4, 5, and 6, also generated mechan-

ically, display information from the SGD and

DGD internal-timing tests in the tables. In

each chart, the left cluster of bars is for Min

St tests; that on the right is for Max St tests.

Within each cluster, the bars represent each of

the tested machines, in the same order that their

tables appear. Within each bar, the dotted line

represents the timing overhead (see below), the

lower bar is the Nu time and the upper bar is the

Ol time. Speedups are computed in each bar;

the lower speedup is computed as a fraction of

the Ol and Nu numbers directly from the table,

the upper speedup is computed by first subtract-

ing the timing overhead from the dividend and

the divisor. The real speedup in practice ought

to be between the two figures.

The timing overhead is the difference in the

clock tick count between two subsequent ex-

Internal Timing External Timing

Acc Min St Max St Min St Max St

Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 9 9 10 10 24 24 29 29

addr 5 5 10 10 21 20 30 29

RIE
load 9 9 17 10 25 25 34 30

addr 5 5 13 10 21 22 30 29

SGD
load 34 9 40 15 49 29 57 31

addr 32 9 38 11 44 25 56 31

DGD
load 35 23 40 25 48 38 57 42

addr 31 18 38 21 46 37 56 40

Cmb
load 76 29 79 39 78 46 98 59

addr 66 23 68 32 76 42 87 49

Table 2: Minimum run times, in CPU cy-

cles, over 100000000 iterations on an Athlon64

3000+ (1.8GHz) notebook, running the bench-

mark compiled for 32-bit mode. The timing

overhead, included in the figures above, was

measured as 8 CPU cycles.

Internal Timing External Timing

Acc Min St Max St Min St Max St

Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 9 9 9 9 9 9 19 19

addr 8 8 8 8 9 10 18 17

RIE
load 9 9 22 9 13 9 32 19

addr 5 8 20 8 9 10 28 16

SGD
load 26 9 37 11 29 15 47 20

addr 23 9 36 10 28 12 47 18

DGD
load 26 25 37 25 29 26 48 31

addr 23 21 36 21 28 22 47 31

Cmb
load 47 30 62 39 52 31 72 50

addr 42 23 59 28 49 27 68 37

Table 3: Minimum run times, in CPU cy-

cles, over 100000000 iterations on the same

Athlon64 notebook from Table 2, running

the benchmark compiled for 64-bit (AMD64)

mode. The timing overhead, included in the

figures above, was measured as 5 CPU cycles.
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Figure 4: SGD addr internal timing results.

ecutions of the instruction that obtains this

count, including the time needed to copy the

contents of the first measurement elsewhere be-

fore they are overwritten by the second mea-

surement. Careful analysis of the tables shows

that the overhead is greater than or equal to the

times measured for certain simple operations.

Such simple instruction sequences are believed

to fit in, or even help avoid additional pipeline

bubbles.

OIE tests confirm the expected absence of

variation, given that it is the exact same code

being generated for both the old and the new

TLS conventions.
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RIE remains nearly identical in terms of per-

formance on IA-32 for the minimum-state tests,

as expected. For the maximum-state tests, the

new method begins to show improvements, as

it enables the compiler to preserve more state

across the TLS calls that, in these tests, end

up being relaxed, but the advantage remains

since the linker cannot recover the performance

loss due to register spilling and reloading. The

performance loss in the 64-bit minimum-state

address RIE probably indicates there might be

better instruction sequences we could use for

relaxation.

SGD is where the new method really shines.

That is no surprise, since it’s exactly the sit-

uation that the new method is designed to

improve, and fortunately also the most com-

mon situation in code generated for dynamic

libraries that accesses thread-local variables.

Absolute reductions in clock cycles are consis-

tent between internal and external timing in 32-

bit mode, where the calling conventions opti-

mization plays a less significant role; in 64-bit

mode, the absolute reductions in clock cycles

are consistent if you compare results among the

minimum-state tests, or among the maximum-

state ones.

DGD shows that performance is improved

significantly even in the case that the new

method regarded as the slow case. Clearly, in

64-bit mode, most of the savings stem from the

optimized calling conventions, that enable the

retention of state in registers, as shown in the

comparison between minimum- and maximum-

state in the internal timing column, where the

new model remains unchanged upon the growth

in state and the old model slowed down by a

significant amount. In the external timing col-

umn, the overhead from having to preserve all

callee-saved registers that are used is noticeable

in the maximum-state column, but not as much

as in the old model. In 32-bit mode, the ability

to check whether the DTV is up-to-date with-

out setting up the GOT pointer is likely what

brings most of the benefit.

Cmb essentially only confirms the results

above, not offering any obvious new insights.

5 Conclusion

The proposed optimization improves perfor-

mance of access to thread-local variables from

dynamic libraries by a big margin for initial li-

braries, without any data size penalty and most

often with code size reductions. For dlopened

libraries, there are still performance advan-

tages, but to a lesser, yet still significant extent,

and there are data size penalties.

It should be highlighted that the performance

gains from lazy relocations, by avoiding reloca-

tion processing at load time, and from code size

reductions, by improving the instruction cache

hit rate, have not been taken into account at all

in the micro-benchmarks exposed here.

The implementation is readily available for

widely-used CPU types, under Free Software

licenses that enable any library to take advan-

tage of this novel technique.

Some open questions remain to be answered in

future work: whether there are relaxation se-

quences that could make the new relaxed code

at least as fast as the old one on AMD64,

and faster on IA32; whether returning an off-

set instead of an address from the specialized

__tls_get_addr calls does indeed help im-

prove performance; whether enabling the spe-

cializations to clobber one or two registers,

which would enable the dynamic-case fast path

to save fewer or even no registers, would cause
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a measurable decrease in performance in the

more common cases; how much of a perfor-

mance improvement could have been obtained

over the old model by using the same call se-

quences, and only modifying the run-time so as

to compute relocations differently, and modi-

fying __tls_get_addr to cope; how much

benefit would be obtained by implementing

DTV compression; how well the optimizations

described here do on other architectures.
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