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Abstract

As multi-core processors become the rule rather than theptian,
multi-threaded programming is expected to expand fromuitsant

niches to more widespread use, in software components #vat h

not traditionally been concerned about exploiting coneney. Ac-
cessing thread-local storage (TLS) from within dynamicdiies
has traditionally required calling a function to obtain tireead-
local address of the variable. Such function calls are sévenes
slower than typical addressing code that is used in exelagab
While instructions used in executables can assume thoezd-|
variables are at a constant offset within the thread Stat® flock,
dynamic libraries loaded during program execution may nene
assume that their thread-local variables are in Static TloSks.
Since libraries are most commonly loaded as dependenceseof
cutables or other libraries, before a program starts rugyrire most
common TLS case is that of constant offsets. This paper gexo
an access model that enables dynamic libraries to take tedy@n
of this fact, without giving up the ability to be loaded dwgipro-

gram execution. This new model was implemented and tested on

GNU/Linux systems, initially on the Fujitsu FR-V architact, and

later on IA32 and AMD64/EM64T, such that performance cowd b

compared with that of the existing models. Experimentalltsse-
vealed the new model consistently exceeds the old modetrimste
of performance, particularly in the most common case, wiiege

speedup is often well over 100%, bringing it nearly to the sam

performance of access models used in plain executables.

Categories and Subject Descriptors D.4.1 [Process Manage
ment]: Threads; D.3.4Processorg]: Code generation, Optimiza-
tion, Run-time environments

General Terms Performance

Keywords Thread-Local Storage, Dynamic Linking

1. Introduction

As mainstream microprocessor vendors turn to multi-corees-
sors as a way to improve performancel[1, 2], the relevanceutti-m
threaded programming to leverage on such potential pegoom
improvements grows.

Besides the common difficulty multi-threaded programs run

into, namely the need for synchronization between thre#ds,
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often the case that a thread would like to use a gFobatiabIe,
for extended periods of time, without other threads modyits
contents, and without having to incur synchronization beeds.

Using automatic variables to achieve this is a possibiityce
each thread has its own stack, where such variables arexdthc
However, if multiple functions need to use the same datatire
within a thread, a pointer to it must be passed around, wtgch i
cumbersome, and might require reengineering the control $lo
as to ensure that the stack frame in which the data structure i
created is not left while the data is still in use.

Widely-used thread libraries have introduced primitivesyer-
come this problem, enabling threads to map a global haricheed
by all threads, to different values, one for each threads Témture
is offered in the form of function callspthread_getspecific
and pthread_setspecific, in POSIX[3] threads), that are far
less efficient than access to global variables and even figsiget
than access to automatic variables. Besides the efficiessnes,
they are syntactically far more difficult to use than regutari-
ables. This was one of the main motivations for the introidumcof
Thread Local Storage (henceforth, TLS[4, 5]) features impib-
ers, linkers and run-time systems, that enable selectdzhblari-
ables to be marked with athread specifier, indicating that, for
each thread, there should be a separate, independent cdpg of
variable.

The other motivation was performance: with cooperatiomifro
the compiler and the linker, it is possible to generate codetess
thread-local variables that is far more efficient than ushegfunc-
tions that offer abstractions of thread-specific data. meaases,
such as when generating code for dynamic libraries, thergtet
code is still very inefficient, for reasons detailed in SectR; for
main executables, access can sometimes be just as effisiant a
cessing automatic or global variables. The mechanismsdatred
in Section 3, based on the novel concept of TLS Descriptpi§[6
yield a major speedup, that brings the performance of TL&s&C
in dynamic libraries close to that of executables, as showdec-
tion 4. Section 5 summarizes the results with some final resnar
and future directions.

2. Background

In this paper, we use the terfpadable module, or just module,
to refer to executables, dynamic libraries and the dynaoacér.
A process may consist of a set of loadable modules consisfing
exactly one executable, a dynamic loader (for dynamic exbtes)
and zero or more dynamic libraries. We caiitial modules the
main executable, any dynamic libraries it depends upore¢tir
or indirectly) and any other dynamic libraries the dynanuader
chooses to load before relinquishing control to the maicetable.
Moreover, we use the teraiopened modules to refer to modules

1The strictly-correct term here would be variable whoseagerhas static
duration.

2005/11/11



Static TLS Block g)ﬁset Dynamic TLS Blocks
o 1]
X H A s f<—
TP offsets Offset
"T\* .....
DTV S~ [T
Module Index

Figure 1. Per-thread data structures used to support TLS.

that are loaded after the program starts running, typidallyneans
of library calls such aglopen.

Every loadable module may define a memory address range

delimiting its TLS segment. This range, after relocatioogassing,
contains the memory image to be used to initialize the TLSklo
associated with that module, for each different thread.

For every thread, two data structures are allocated: acSkas%
Block and a Dynamic Thread Vector (DTV), as depicted in Fig-
ure 1. A reserved register, called the Thread Pointer (Tristiort),
points to a base address within that thread’s Static TLSIBIAt
a fixed relative location within the Static TLS Block lies aimter
to the DTV. The DTV, in turn, starts with a generation countel
lowed by pointers to TLS Blocks. For every module containing
TLS segment, a module index is assigned, that indicatesrting e
in each thread’'s DTV reserved to hold a pointer to the TLS Bloc
corresponding to that module.

The dynamic loader can use information about the TLS seg-
ments of all initial modules to lay out the Static TLS Bloclkadh
thread’s static block will contain TLS blocks for all initimodules.
Using the same layout for all threads implies that the redatica-
tions, in the Static TLS Block, of the initial modules’s TL®bks's
are the same across all threads, thus enabling not onlyesfficode
generation for some TLS access models, but also the optimiza
proposed in Section 3.

2.1 Access Models

If a main executable contains a TLS segment, the dynamieload
not only reserves the first entry in the DTV for it, but alsoday
out the Static TLS Block in such a way that the offset from the
TP to the executable’s TLS block is a constant computablmlat |
time. The exact location of the executable’s TLS block withi
the Static TLS Block only depends on the size and alignment
requirements of the executable’s TLS segment, and comrenti
set by the Application Binary Interface (ABI) of the hardwar
architecture and operating system. Since the linker carpoterthe
offset from the TP to the executable’s TLS block, and thetieda
location of a variable defined within this block, it can cortgthe
exact TP offset of such a variable (say, variabie Figure 1), and
use that as a displacement from the TP to access the varidtte.
access model is known as Local Exec. It is the most efficiant, b
least general, access model, since only the main executablese

it. An example of computing the address of a variatde into
registerreg using the local Exec access model, in low-level pseudo
code, is given belowrPoff is a functional notation to denote the
TP offset of a variable.

let reg < TP + TPoff(var)

Accessing thread-local variables that are not defined imiie
executable preclude the use of the Local Exec access mdael. T
main executable, however, can still take advantage of titettiat
every dynamic library it depends on, that might provide tagable
it wants to access, is an initial library, and therefore gtative
location within the Static TLS Block is a run-time constamhich

holds for variablesx and y in Figure 1. Emitting a relocation
to get the dynamic loader to compute this run-time constadt a
store it into a Global Offset Table (GOT) entry, and usingsthi
constant, loaded from the GOT, as an offset from the TP tosacce
the variable, is called the Initial Exec access model. Uréetain
circumstances, it may be used in dynamic libraries as well, b
it may come at the cost of being unable to dlopen such libsarie
An example of computing the address of varialsée into register
reg using the Initial Exec access model follove®T, in such low-
level pseudo code, denotes a reserved register or somel&eae
addressing mode that yields the GOT base addi@¥ETPoff
denotes the offset of a GOT entry that, at run time, will hdid t
TP offset of a variable.

load reg, GOT[GOTTPoff(var)]
let reg < TP + reg

The other two access models, General Dynamic and Local Dy-
namic, require the use of the DTV. Both access models invadile
ing a function, normally called t1s_get_addr, to obtain a thread-
local address. Functiontls_get_addr requires two pieces of in-
formation to compute requested the address: a Module Indéx a
an Offset within the module’s TLS segment, as depicted infeid.
for variablez. These two pieces of information are normally com-
puted by the dynamic loader, in response to relocationesthat
request them to be stored in the GOT. An example of the use of
the General Dynamic access model is given below, using edjac
GOT entries and passing it by reference in a register. Othpte-
mentations use independent GOT entries for the two valueorn
pass them by valu&dTModIdx&0£f is a functional notation to de-
note the offset of a GOT entry that, at run time, will hold a Mt
Index followed by a corresponding Offset.

let reg < GOT + GOTModIdx&0ff (var)
call __tls_get_addr

Local Dynamic is a variant of General Dynamic that calls the
function to compute a base address, normally by passingutiee f
tion a zero offset. Having obtained the base address of a leiedu
TLS block with a single call, the Local Dynamic access mobeht
uses variables’s offsets to access them using the samediress
The offsets can all be computed by the linker, since they vea
property of the module. An example follows, in whiGBTModIdx
denotes the GOT offset for an entry that, at run time, willchtble
Module Index and a zero offset, aMdd0ff represents the Offset
of a given variable.

let reg « GOT + GOTModIdx()
call __tls_get_addr

let regl « reg + ModOff (varl)
let reg2 <« reg + ModOff (var2)

2.2 Dynamic behavior

At thread creation time, the DTV is initialized such thatgventry
corresponding to an initial module points to a TLS block with
the Static TLS Block, like the second and third slots in theVDT
in Figure 1, and all other entries are marked as not allo¢ditezl
the fourth slot. Entries for dlopened modules have to begassi

on demand to TLS blocks allocated dynamically, as depicted b
the two Dynamic TLS Blocks in the figure. Dynamic allocatign i
necessary because multiple threads may already be runnthg a
time a new module is loaded into a process. Functiefs_get-
_addr is responsible for the run-time maintenance of the DTV.

The generation counter in the DTV is used to keep track of such
dynamically-allocated TLS blocks: every time a dlopenediuie
with a TLS segment is loaded or unloaded, a global generation
counter is incremented. Functiartls_get_addr checks whether
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the DTV generation counter is up to date every time it is chllé
the DTV is found to be out of date, the function may have toaste
the memory associated with its outdated entries, to dyreliyic
resize it, and to set any released or newly-created entwidbet
unallocated state.

Once the DTV is up to date, if functiontls_get_addr finds
that the requested DTV entry is not allocated, it allocaltesrtec-
essary storage, initializes it with the contents of the Te§ment
from the corresponding module and sets the DTV entry to tlee al
cated address. At last, it loads the module’s TLS block's s
dress from the corresponding DTV entry and adds to it theatéei
offset it was passed as argument, returning the result.

3. Optimization

Let us first investigate why_tls_get_addr is perceived as so
slow, and then proceed to introducing the optimization sctbpf
this paper.

3.1 Inefficiencies in__tls_get_addr

Jjump to address loaded from PLT GOT entry

set up stack frame

save call-preserved registers used in slow path
save and set up GOT register if needed

load regl « TP[DTVoff]

load reg2 <« GOT[GOToff (generation_counter)]
branch to slow path 1 if regl[DTVGCoff] < reg2
load reg2 « regllargl X DTVentrysize]

branch to slow path 2 if reg2 == UNALLOCATED
let result <« reg2 + arg2

restore registers

destroy stack frame

return

Even if the compiler could be improved so as to avoid setting u
a stack frame, the GOT-relative addressing mode to acceggetit
eration counter is unavoidable. As for the PLT entry, theitaithl
jump could be avoided by using a call sequencetls_get_addr
callers that referenced its GOT entry directly, precludimy relo-
cation of this reference and, most often, requiring largeiecsize at
all call sites, negatively impacting the instruction caeffficiency.

It might seem that the dynamic access models should not be so _
expensive, since in the most common case, the run-time behav 3.2 TLS Descriptors

ior of function __t1s_get_addr will involve two test-and-branch
sequences, with branches predicted not taken, followedfsgte

From the previous paragraph, it would seem that improvirey th
performance of the dynamic access models would not involve a

ting the base address already loaded for the second testeby th change in the access models themselves, but rather in thgileom

amount given as an argument, as in the low-level pseudo oede b
low. DTVoff denotes the offset from the TP to the DTV address
stored in the Static TLS blociTVGCoff, the relative location of
the generation counter in the DTV, normally DfVentrysize,

the size of a DTV entryargl andarg2, the module index and the
offset, respectivelytesult, the register in which_t1s_get_addr
returns its result.

load regl « TP[DTVoff]
load reg2 «— generation_counter
branch to slow path 1 if regl[DTVGCoff] < reg2

load reg2 « regllargl X DTVentrysize]
branch to slow path 2 if reg2 == UNALLOCATED
let result <« reg2 + arg2

return

The first test, however, involves a global variable, the glob
generation counter. Accessing a global variable can beiela
expensive in such a simple function, since it may requirgrggtip
the GOT register to compute its address, if PC-relative egking
is not available.

A bigger performance penalty follows from the compiler’s in
ability to avoid saving and restoring registers, and evétirgeup a
stack frame, in the fast path that issues no function catisreeds
only two scratch registers. Since the slow paths issueifumctlls,
compilers will generally set up a stack frame for the entinedtion,
and since such paths are complex, possibly requiring neltgy-
isters, several of which have to be saved and restored evegytiie
function is called, even though they are seldom actuallguse

Yet another performance penalty is related with the fact tha
__tls_get_addr is always called through Procedure Linkage Table
(PLT) entries. Since it is defined in the dynamic loader,sctil it
in other modules have to go through such an entry that loagls th
actual function address from the GOT and then jumps to it.

Without such inefficiencies, the instruction sequence abov
would be observed at run time. However, with all the ineffieie
cies, the dynamic instruction trace after an instructidret talls
__tls_get_addr is as follows. Additional instructions, not present
above, areemphasized. GOToff (sym) denotes the offset from the
GOT to the address of symbsym.

used to compile_tls_get_addr.

It is possible, however, to make them more efficient, by intro
ducing specialized versions thereof for different sitoas, and by
providing such specialized versions with additional imfiation.

Let us put aside for a moment the issue of how to get the most ap-
propriate specialized version selected efficiently, andceotrate
on the potential benefits first.

3.2.1

One major shortcoming af t1s_get_addr is that it fails to take
advantage of the fact that, to access the TLS block for arainit
module, no tests are necessary. Since initial modules’ TIh&kb
are laid out as part of Static TLS Blocks, all threads’ DTMigatly
contain the correct addresses in the entries corresportdisgch
modules, so it would suffice to dereference the DTV and add the
variable offset.

However, it is possible to do even better in the Static TLS®cas
since the initial module’s TLS block is at an offset from the T
that is the same for all threads, we can use the provisioneabbv
passing additional information to the specialized funtémd pass
it this constant TP offset, instead of the then-unused neoihalex.
Thus, all this specialized function has to do is to add the utessl
TP offset to the TP, and then to the variable offset.

In a further step, this specialized function could take agiar
ments, instead of the TP offset and the variable offset, theqmn-
puted result of adding them together. This specializedtfands
thus reduced to the following pseudo code:

Improving Static TLS

let result < TP + arg
return

Selecting this specialized function reduces significartkg
computation performed in the function, rendering its perfance
very similar to that of the Initial Exec or even Local Exec rets]
discounting the function call overhead. The use of this isgieed
version is the most significant improvement we have intrediic
but there are additional minor improvements to follow.

One important point to consider is that all specializationsst
present the same interface, such that callers are totaslyare of
which specialization is selected; such selection takesepdd run
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time, at which point it is undesirable to modify code. Theref Since we have arranged for the Static TLS specializatiorséo u
when we modify the interface of a specialization so as to take a single argument, we can do the same for the Dynamic TLS spe-

single argument, we are either determining that none offibeial- cialization at hand. Since there is no way to avoid the rexmént
izations can take more than one argument, or that this oreéadpe  for the module index and the offset, however, in order to fitrés
ization will ignore any additional arguments other spez&tions information in a single argument, the only solution is to ursdi-
might require. rection.

Since Dynamic TLS is designed to be the rare case, allocating
3.2.2 Returning TP offsets additional storage for references to such variables is pentd

unacceptable, so what we do here is to arrange for the Dynamic
TLS specialization to be passed, as its argument, a pomtedata
structure containing not only the module index and the offset

also the generation counter needed by the module. The fipedia
function can thus avoid the need for the GOT register in tis¢ fa
path, using for the test the generation counter stored s dhia
structure passed as its argument, also avoiding DTV updagts
would not affect its ability to access the requested module.

On Fujitsu FR-V, a particular detail of the ABI[8] required a
additional field in this data structure. The ABI requires tROT
register to be set up in call sequences, not by the calldé Eece
no specializations of TLS calls would require the GOT reggish
their fast paths, we have arranged for the argument to beegass
the way the GOT register would have been set up, and added the
value that should have been stored in the GOT register talttes
structure, such that, when it is needed, it is readily abéela

An additional micro-optimization, applied on FR-V, is to-ar
range for this data structure to contain not the module intek
rather the offset into the DTV where its entry is stored. ™#ges a
shift-left instruction in the fast path of the specializeaiétion, be-
cause FR-V does not have an addressing mode that adds an index
register multiplied by a constant to a base register.

On some architectures, register-plus-register indireltdressing
modes is little or no more expensive than indirect addrgssin
modes. On Fujitsu FR-V, for example, there is no singlesteyi
indirect addressing mode: loads and stores compute thessity
adding a register to either another register or a constapate-
ment. On 1A32 and AMD64/EM64T, on GNU/Linux, segment reg-
isters are used as TP, so an instruction with a single-esgisdirect
addressing mode can be modified to use this register as at offs
from the segment base address by using a 1-byte prefix, with no
significant performance penalty.

On such architectures, it makes sense to arrange for thédanc
to return not the address of the variable, but rather its TBetf
If it is also possible to arrange for the argument to be passed
in the register used to hold return values, then the speai#din
optimized for Static TLS becomes a single return statemast,
on FR-V. On IA32 and AMDG64/EM64T, it could be possible to
achieve the same, but at the expense of additional codergteaié
site to load the argument from memory. Thus, it is more effigie
in terms of code size, to leave it up to the specialized famncto
load it before returning.

3.2.3 Linker relaxations

TLS-related relaxations are always defined so as to turnsaese 3.2.5 Specialized calling conventions
using dynamic access models into Initial Exec or Local Exec
when linking an executable. In general, thels_get_addr call
sequence, including the instructions that set up the argtsnbas

to contain padding such that, if the linker relaxes the coderhore
efficient access model, it can fit the instruction to add thedrthe
TP offset, that is a constant for Local Exec or a value loadeuh f
the GOT for Initial Exec.

The convention of returning the TP offset instead of the a@ctu
address simplifies linker relaxations, because the addiifothe
TP does not have to fit in the replacement sequence: it isthirea
there, after the call sequence. So it suffices to arrangdévalue
loaded from the GOT, or the fixed constant used in Local Exec, t
make it to the register in which the call would have returrtesl TP
offset. With the reduced padding, code size is reduced,awipg
the efficiency of the instruction cache.

' The IA32 version of _t1s_get_addr on GNU/Linux has tradition-
ally used custom calling conventions in that its argumergsnat
passed on the stack, as usual, but rather on registers. fidnigds
also be the case of specializations of this function.

Besides specifications of where arguments are passed amel whe
return values are stored, another important aspect ofhgadon-
ventions is that of defining which registers a function candmo
ify without preserving (caller-saved or call-clobberedhd which
have to be saved before they can be modified (callee-saveadlor ¢
preserved).

The most common TLS cases in code compiled for dynamic li-
braries, namely Static TLS specialization and relaxatmmnfiain
executable, can assume that, in a TLS call instruction oefikace-
ment, no register is modified other than the one holding thelte
ing address or TP offset.

Only the Dynamic TLS specialization needs a pair of temporar

3.2.4  Avoiding unnecessary DTV updates registers for the fast path, and potentially several otagisters for

The use of a global variable, namely the generation coumtegn the slow path.

testing whether a DTV is up to date, is nhot only a bad idea tsrau Since in this work we are defining a new interface fotls-

of the potential performance hit associated with savintirgeup _get_addr specializations, we might as well define the conventions
and restoring the GOT register. regarding preserved registers to privilege the most comoases.

The fact that some thread may choose to dlopen or diclose  We have thus defined that the specializations are to presdrve
a modulea may slow down another threalt that accesses TLS  registers other than the return value, such that TLS caltstm

variables from modulé. This occurs because the test.irnls- modeled like simple loads, enabling the full register sdig¢aised
_get_addr checks whether the DTV is up to date, and not whether without concerns about preserving registers across sutsh Tais
it is recent enough to access a variable in the requestedimodu requires that, when the slow path of the Dynamic TLS spezdali

While indexing some TLS module table to determine the gen- tion issues calls to other functions, it preserves all tegésthat they
eration count associated with a module could be feasibieoutd might modify. Since it is the slow path, and it has so much work
significantly slow down the fast path. However, with our psion do anyway, this additional work is insignificant. Unfortaelg, this
of passing additional information to the specialized fiorts, we decision also affects the fast path, in that it has to prestre two
can arrange to have the minimum generation count neededéss®c  scratch registers it needs, but since Dynamic TLS is assualee
amodule’s TLS passed to a specialized function used to bangl the uncommon case, privileging the Static TLS case is a nedde
namic TLS. decision.
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3.2.6 Selecting specializations at run time

Now that we have established that both specializations wuattk

a single argument, and defined that they should use custdmize
calling conventions to do their jobs, we are ready to speledw

the appropriate specialization is to be selected and called

In the existing dynamic access models, two GOT entries are
needed to hold the arguments ta1s_get_addr. Since for the
specialized versions we can use only one, we can use thetother
hold the address of the specialized function. Then, we gador
the code, that used to calltls_get_addr, to call the function
whose address is stored in that location.

As a general rule, we can store the function address at the
GOT entry that would, in the traditional access model, contae
module index, and the argument to the function, in the GOTyent
that would contain the variable offset. Since, for a givendmie,
the decision on whether its TLS block can be accessed with the
Static or the Dynamic specialization is the same for all alalgs
in the block, this general rule works even for ABIs that eesthie
module index and the variable offset to be in nhon-adjacetrtesn
with potential use of the module index entry to access mieltip
variables.

The machines on which the new access model was imple-
mented, however, all use adjacent GOT entries, since th&g tha
code much simpler, at the expense of additional GOT spacéodue
the multiple copies of the the same module index. Neversisetbe
absence of such sharing enables lazy processing of redasatis
detailed in Section 3.2.8. When the entries are adjacesy, fthrm
a data structure that we call TLS Descriptor, named afterckFun
tion Descriptors, present in ABIs such as |IA64’s[9], PPGEA]
and FR-V’s[8], that contain a function’s entry point and antext
pointer, e.g., the GOT pointer to be used by the function. deS
scriptors also take two words, but, instead of a contexttpaitheir
second word contains an argument to the function whoseegxast
in the first word, as depicted in Figure 2.

Fujitsu FR-V has never had a traditional TLS ABI, since it was
already designed taking advantage of the new access modeleb
can imagine that, if it had, the instruction sequence wowddb
follows.

sethi.p #gottlsgdhi(var), gr8
setlo #gottlsgdlo(var), gr8

1dd #tlsgd(var)@(gri5, gr8), gr8
call __tls_get_addr

The 144 instruction loads into the pair of registers starting at
gr8 the pair of words starting at the address obtained by adding
gri5, the GOT pointer, angr8, whose value was set to the linker-
computed displacement for the GOT entry containing the rreodu
index and the variable offset. In the actual FR-V TLS ABI, tad{
sequence is as follows.

sethi.p #gottlsdeschi(var), gr8
setlo #gottlsdesclo(var), gr8

1dd #tlsdesc(var)@(grilb5, gr8), gr8
calll #gettlsoff(var)@(gr8, gr0)

The variation here is mainly from relocations that refeesiac
TLS Global Dynamic GOT entry to those that reference a TLS
Descriptor GOT entry, and the last instruction, that is d tal
a named function in the former, that goes through a PLT entry,
and a call to a given address in the latter, that goes stréigtie
specialization. The address was loaded igt8; gro0 is fixed at
zero.

On GNU/Linux 1A32, the difference is a bit more significant.
The current TLS ABI specifies the following sequence for the
General Dynamic access model.

Static TLS
Specialization
TP Offset
Function T
Pointer .
Argument ... ‘:
l Lazy TLS
| Specialization
Tl Relocation
L Pointer
Dynamic TLS }
Specialization !
Module
Index
Offset
Generation
Counter

Figure 2. General structure of a TLS Descriptor, with 3 different
specialization types, for Static and Dynamic TLS, and LakysT
that decays to one of the other two on the first use.

leal var@TLSGD(,%ebx,1), l%eax
call ___tls_get_addr@PLT

This uses an extraneous addressing modé éail, equivalent
to (%ebx), but longer, making the instruction long enough for the
relaxation replacement, that takes 12 bytes. Our versionweher,
is as short as 8 bytes for the call sequence, although it nejan
additional byte for the segment prefix to the load or stortriresion
that uses the resulting offset.

leal var@TLSDESC(%ebx), %eax
call *var@TLSCALL (%eax)

Note thatrar@TLSCALL is just an annotation to aid linker relax-
ations, such that the two instructions can be scheduled. aftze
actual instruction encoding is the two-byte indirect ctiht calls
the function at the address stored at the memory locatiorsevhd-
dress was computed inffeax by theleal instruction. The called
specialization knows that, at its entry poifigax points to the TLS
descriptor, so it can load its argument from the descriptor.

On AMD64/EM64T, the original call sequence contains severa
meaningless padding prefixes to make room for relaxatiostsub
tutions, as follows.
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.byte 0x66 handles lazy relocation, and the argument is set so as tbfodime

leaq var@TLSGD(%rip), %rdi relocation itself.
.word 0x6666 When the function is called, it resolves the symbol the r@loc
rex64 call __tls_get_addr@PLT tion refers to, decides whether to use the Static or Dynapecial-

ization and sets up the TLS descriptor according to the dsgis
such that subsequent calls involving the same TLS descsigio
straight to the most efficient specialization.

Care must be taken to ensure that the TLS descriptor is never i
a state that, should another thread perform an access uisimg i
yield an incorrect result.

Our improved call sequence follows the very same pattern as
1A32, with the difference that GOT accesses do not involveexfi
register, but are PC-relative, and register and addresee®4abits
wide. While the above takes 16 bytes, the following takestts |
as 9, plus one for the byte prefix in actual accesses.

leaq var@TLSDESC(Yrip), Yrax On FR-V, that is not very difficult, since the instructionsath
call *var@TLSCALL (Yrax) read and store a pair of words is atomic, as long as the paioafsv
is sufficiently aligned, and TLS Descriptors must be aligtethat
boundary.
3.2.7 DTV compression On IA32 and AMD64/EM64T, on the other hand, there is no

instruction that can read or modify a pair of words atomigcadince
requiring every call site to use synchronization would bedostly,
a solution was devised that requires synchronization omlyhe
lazy relocation function itself.

The lazy relocation specialization first acquires a dynamic
loader lock and verifies that the TLS descriptor still poitdsit-
self. If so, it modifies it so as to point to a hold function. Att
point, it can release the lock and compute the final valuesTttS
descriptor.

Before modifying the descriptor, it acquires the lock again
wakes up any threads that might be waiting for it in the hold
function (using say a condition variable), finally releasthe lock
and transferring control to the function whose address wared
in the TLS descriptor.

The hold function simply acquires the lock and, in a looptges
whether the TLS descriptor still points to it and, if so, vgain the
condition variable until it is signaled, otherwise, it rates the lock
and transfers control to the function specified in the TLSdp#or.

A simpler, yet less scalable, alternate design for the hold
function, that does not involve condition variables, rel@n the
lock alone: the lazy relocation function does not releaseldick
throughout its operation, and the hold function is as sinaglec-
3.2.8 Lazy relocations quiring the lock, releasing it and transferring controltie function
specified in the TLS descriptor.

When this new access model is used, and the traditional one is
not (i.e.,__t1ls_get_addr is never called directly), it is possible to
remove all static entries from the DTV, since they are nesadu
Since we know that every access to Static TLS will go throdgh t
static specialization, that does not use the DTV, entriessth
modules can be entirely removed, enabling the initial DT\b&
trivially set up.

This offers a slight speed up in thread creation for processe
that have multiple initial modules with TLS segments, ptitly
saves memory by delaying the need for dynamically growirgg th
DTV, and enables the DTV to be reduced by half, since its ctirre
definition reserves a word in every entry to tell whether istiatic
or dynamic.

Even when the traditional dynamic TLS access model is used, i
is possible to enable this DTV compression, as long as thexind
range reserved for initial modules can be easily distingjuéal
from that of dlopened modules, for example, by having thetmos
significant bit set__t1s_get_addr would then have to recognize
this case and use an alternate code path that, instead iy ely
the DTV, obtained the module’s constant TP offset from a spa
table.

Processing relocation entries lazily enables significpaedups in
start-up time for applications. The mechanism consistefiopm-
ing a very quick pass over relocations that can be resolvaty la

(something that can be determined by the linker), settiegntlup 4. Performance

such that, only when they are used for the first time are thiyatlg Verifying any actual performance improvements providedtiy
resolved. optimizations introduced herein proved to be a major chake To
This has traditionally been used to resolve function addres  the best of our knowledge, the only library that makes heaeyaf
in dynamic linking. A call to a function that does not bind &y Thread Local Storage is GNU libc itself. To make matters wors
(i.e., that may be resolved to a definition in a separate ne)dsl| GNU libc takes advantage of the fact that its dynamic loader a
directed to go through a PLT entry, that loads an address fhem C library are always loaded initially, and thus they use thigdl
GOT and jumps to it. Exec access model throughout the libraries offered by GNU, i

In the first pass, the dynamic loader sets these GOT entries ensuring that any thread-local variables accessed withattiess
to point to a stub that calls the dynamic resolver with enough model are located in one of these two libraries.

information for it to identify the relocation that it shoulésolve Even forcing GNU libc to not use the Initial Exec access model
at that time. and running the Native Posix Thread Library (NPTL[11]) oe+f

The dynamic resolver applies the relocation, modifying the mance benchmark to evaluate the benefit of the optimizadidims
GOT entry such that subsequent calls go straight to the lfctuz: benchmark showed no difference whatsoever. Investigatiowed
tion, and then transfers control to the function that shduwdae that this benchmark calledt1s_get_addr only a handful of times
been called, as if it had been called directly. during a test run that took tens of seconds. No significarfoper

Although lazy relocation processing is very often applied t mance differences would be exposed by this benchmark.
function calls, it is never applied to data accesses, sinegetis The main reason as to why the thread performance test did not
no transfer of control involved, and introducing it wouldhder the use dynamic access models very often is that, first of alidinat
access model too costly in terms of performance. exercise thread-local storage access itself and, everdifljtit is

In our optimized dynamic access model, however, there is a a main application, not a dynamic library, so dynamic modiels
control transfer, and we realized we could use that to enalzle not apply. As for the libraries it uses, GNU libc’'s C and thdea
relocation processing. In the quick pre-relocation pdssfunction libraries maintain information pertaining to threads ie thread’s
address in the TLS descriptor is set to another speciadizatiat static TLS block, and access it using a model similar to L&oadc,
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so they are not affected by the choice to not use the Initi&gcEx
model within libc.

Although Gomp[12], the implementation of OpenMP[13] for
the GNU toolchain, might soon become a viable platform foame
suring TLS performance, it is still under early and activeelep-
ment, so we had to drop this option as well, and were left With t
need for creating synthetic microbenchmarks.

variables of their own can easily be assigned to call-pveser
registers, so the optimized calling conventions suggestetiis
paper show no benefit whatsoevéif St). In order to expose
such benefits, the other half of the test functions contaiargel
number of automatic variableM@x St) whose contents are forced
into registers before and after the TLS operation, such thizh
the standard calling conventions, almost all call-clokbleegisters

We have created a total of 40 tests for our benchmark, such have to be spilled before the call and reloaded after it, eaewwith

that every test is represented as a function that returnswatre
that is somehow related with one or more thread-local véegb
with variations in 4 different dimensions, described infibléowing
paragraphs.

Operation Half of the tests compute the address of a thread-local
variable @ddr), whereas the other half computes the actual value

stored in the thread-local copy of the variabiea). This exposes
differences related with the efficiency of accessing a titleaal
variable without explicitly adding the thread pointer te ielative
location. On all tested CPUs, the TP register is a speciastery
whose contents cannot be read or modified from userlandnlbea
used as a base register to read or modify a thread-locablaribut
computing the address of a variable requires loading thistests
value from a reserved location in the Static TLS block.

Timing All of the timing is performed using the clock tick count-
ing instructions available on the CPUs we've used for tgstihalf
of the test functions time their operation by themseltete¢nal ),
storing the number of clock ticks elapsed while performiimg op-
eration in a pointer passed in as an argument. The other &slf p
form no timing whatsoever, relying on their callers to oht#ie
clock tick count for the entire calHxternal). Unlike the previous
dimension, that intends to expose differences, this orend to
confirm the performance improvements we've achieved, bgroff
ing multiple performance measures of different but furridy-
similar code.

The confirmation was not straightforward, though; the dittl
room for scheduling in the internal timing variants and ttighh
pressure on the registers used by both the timing instmstand
function call return values would create pipeline bubblesg twith-
out care to avoid such worst-case conditions (unlikely touoén
real life), would have made some tests that perform veig ltork
appear to be slower than some that perform much more work.

Access model  We have four different kinds of tests in this di-
mension, in which knowledge about the location of the thiieadl
variable used varies, plus one kind of test that combinessscto
multiple variables.

Half of the single-variable tests use Initial Exec accesdei®)
but in half of these, the compiler generated Initial Exececbe-
cause it was told the variable was in Static TICBE, for original
IE); in the other half, the compiler was told the variable waBy-

namic TLS, so it generated General Dynamic code, and then the

linker relaxed that to Initial Exec, being aware of the St&tLS
location of the variableRIE, for relaxed IE).

The other half of the single-variable tests use General Dyna
access models. In half of these, the variable is in Static, Sb®ur
main optimization kicks in$GD, for static GD); in the other half,
the variable is in Dynamic TLS, so the main optimization does
apply OGD, for dynamic GD).

The multi-variable testsGmb, for combined) subtract the val-
ues or addresses of tfRIE and theSGD variables, and adds the
value or address of tHeGD variable, returning the result. Being a
more complex test, this gives the compiler more opportuityide
the latency of certain operations through instruction dcifiag.

Local State Half of the test functions are so simple that, when

they have to call_tls_get_addr or equivalent, any automatic

our optimization, none of this takes place.

The number of variables is chosen such that all but one of
the general-purpose registers are taken up by these \egia®h
1A32, we use 5 such variables, considering thetix is reserved as
the GOT pointer, and thdlebp can be used as a general-purpose
register, making up for 6 available registers, 3 call-sagdall-
clobbered. On AMD64, we use 14 such variables, sifesp is
not really usable in the 16-register set. On both CPUs, we kee
one register available to hold the result of the TLS opergtio
with the explicit intention of showing a worst-case scendor
the traditional code, where the advantages of the custotmgal
conventions would be greatest. The actual benefit from thange
will be somewhere in between the two variants in this dimemsi

The 40 combinations of the above variations are all locate i
dynamic library that is dlopened by the main benchmark pogr
This ensures that the test functions do not get inlined iht t
main benchmark loop, which might enable hoisting of operegi
making operations look faster than they are.

We build two such dynamic libraries for each tested architec
ture: one created with the compiler configured to generati co
in the traditional way QI), another following our new proposed
method (u). A full test run goes through all 40 tests for each of
the 2 libraries, which makes up for the 80 tests total.

Every test is run a large number of times, in two different
configurations. In one configuration, we run them in a tigplain
the other, in a randomized sequence.

Although running the tests in a tight loop has enabled usito in
tially measure a lower bound for the execution time of each, te
such lower bound is not very representative of real-lifefqrer
mance, since it depends heavily on hot caches and neaffigeper
branch and call/return prediction, something that is naessarily
expected in practice.

In order to try to obtain more representative results, wéecol
all of the tests into a vector and then, for every iteratiorthia
main benchmark loop, we get the vector sorted at random and
then iterate over the randomized vector, running each test per
iteration in the main loop. Each test run produces a timeltrésat
is immediately logged to a file. This logging and randomizati
helps avoid getting cache, branch and call/return premfidtits too
common for any single test, which enables us to achieve ratelgr
reproducible results with thousands of runs of each testppesed
to hundreds of millions that we needed in the tight-loop. tiéstiten
(but not always) gets us identical per-iteration lower kisjbut the
average run times no longer tend to the lower bound as ttedier
count increases.

Unfortunately, this randomization, and the possibilitylohg
interrupts and context switches that could skew averagestup
random, have caused average times over 1 million runs tolwary
as much as 30%, even after discarding values that appearttm be
high.

That said, in spite of the significant error margin in the éxac
averages, we've verified that there appears to be a strongjation
between improvements in minimum times, as measured inghe ti
loop, and improvements in the average times, although sypsed
tend to be smaller for averages than for minimums.
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Internal Timing External Timing Internal Timing External Timing
Acc Min St Max St Min St Max St Acc Min St Max St Min St Max St
Mod | Op Ol | Nu| Ol | Nu| Ol | Nu| OI| Nu Mod | Op | Ol | Nu| Ol | Nu|OI|[Nu|OI | Nu
OIE [load | 33| 33| 37| 37| 48| 48| 58| 58 OIE [load | 9 9|10] 10| 24| 24|29 29
addr| 33| 33| 38| 38| 45| 45| 55| 55 addr| 5 5(10| 10| 21| 20| 30| 29
RIE |load| 35| 35| 40| 38| 50| 50| 61| 60 RIE |load | 9 9(17| 10| 25| 25| 34| 30
addr| 34| 34| 39| 37| 48| 50| 62| 59 addr| 5 5|113] 10| 21| 22| 30| 29
SGD |[load | 64| 39| 67| 43| 77| 53| 88| 64 SGD | load | 34 9140 15|49| 29| 57| 31
addr| 63| 39| 67| 43| 76| 53| 87| 64 addr | 32 9|38| 11| 44| 25|56 | 31
DGD |[load | 64| 58| 67| 58| 77| 67| 90| 78 DGD [ load | 35| 23| 40| 25] 48| 38| 57| 42
addr| 63| 53| 68| 58| 76| 67| 87| 76 addr| 31| 18 | 38| 21| 46| 37| 56 | 40
Cmb | load | 104 | 63| 108 | 77| 110 | 78 | 131 | 100 Cmb |[load | 76 | 29| 79| 39| 78| 46 | 98 | 59
addr| 94| 64| 101 | 69| 113 | 78 | 123 | 90 addr | 66 | 23 | 68 | 32| 76 | 42 | 87 | 49
Table 1. Minimum run times, in CPU cycles, over 100000000 Table 2. Minimum run times, in CPU cycles, over 100000000 it-

iterations on a Pentium Ill Speedstep 1.0GHz (32-bit only)e
timing overhead, included in the figures above, was measased
33 CPU cycles.

Given this correlation and the irreproducibility of the ekav-
erage results, we've decided to not include the averagestime
the paper. Since binaries and the complete source code ahthe
plementation, including the benchmark program that caregen
ated them, are available for downloadtattp: //www.1lsd.ic.
unicamp.br/~oliva/, publishing only the minimum times, that
are perfectly reproducible, was deemed enough.

4.1 Analysis

Testing procedure was as follows. A toolchain was built oddfa
Core 4, based on snapshots of the GCC and GNU binutils devel-
opment trees taken on Oct 30, 2005. This toolchain was cadbl
generating code for both |1A-32 and AMD64, selecting the ald o
the new TLS call sequences through a command-line switcte-A d
velopment snapshot of GNU libc, taken on the same day, wéis bui
using this compiler for both 1A-32 and AMD64. The I1A-32 vargi
was built with optimizations for Pentium Il or newer; the AN6D
version was built with default settings. The benchmark proy
and libraries were built with the same settings.

The benchmark program was run on 3 different environments,
each one described in the caption of the corresponding:table
Pentium Il processor ran the 32-bit benchmark (Table 19i, @m
Athlon64 processor ran both the 32-bit (Table 2) and the i64-b
(Table 3) benchmarks. In all cases, the processors weregooad
to avoid clock speed switching, and the boxes were very light
loaded, except for the benchmark program. The results were m
chanically converted t&*TX tables.

Figures 3, 4, 5 and 6, also generated mechanically, display
information from theSGD and DGD internal-timing tests in the
tables. In each chart, the left cluster of bars is fbin St tests;
that on the right is foMax St tests. Within each cluster, the bars
represent each of the tested machines, in the same ordehdiat
tables appear. Within each bar, the dotted line represketsming
overhead (see below), the lower bar is the time and the upper
bar is theOl time. Speedups are computed in each bar; the lower
speedup is computed as a fraction of @& and Nu numbers
directly from the table, the upper speedup is computed by firs
subtracting the timing overhead from the dividend and tésdr.

The real speedup in practice ought to be between the two figure

The timing overhead is the difference in the clock tick count
between two subsequent executions of the instruction thiztires
this count, including the time needed to copy the contenthef
first measurement elsewhere before they are overwrittenhby t
second measurement. Careful analysis of the tables shaivihth
overhead is greater than or equal to the times measured airce

erations on an Athlon64 3000+ (1.8GHz) notebook, runnirg th
benchmark compiled for 32-bit mode. The timing overhead, in
cluded in the figures above, was measured as 8 CPU cycles.

Internal Timing External Timing
Acc Min St Max St Min St Max St
Mod | Op [ Ol | Nu| Ol | Nu| Ol | Nu| Ol | Nu
OIE [load| 9 91 9 9] 9 919 19
addr| 8 8| 8 8| 9| 10| 18| 17
RIE |load | 9 9| 22 9] 13 9132| 19
addr| 5 8| 20 8| 9| 10| 28| 16
SGD | load | 26 9 (37| 11|29| 15| 47| 20
addr | 23 9 (36| 10| 28| 12| 47| 18
DGD [load | 26 | 25| 37| 25| 29| 26 | 48| 31
addr | 23 | 21 | 36| 21| 28| 22| 47| 31
Cmb |load | 47| 30| 62| 39| 52| 31| 72| 50
addr| 42 | 23 | 59| 28| 49| 27| 68| 37
Table 3. Minimum run times, in CPU cycles, over 100000000

iterations on the same Athlon64 notebook from Table 2, nugni

the benchmark compiled for 64-bit (AMD64) mode. The timing
overhead, included in the figures above, was measured as 5 CPU
cycles.

simple operations. Such simple instruction sequencesedievbd
to fitin, or even help avoid additional pipeline bubbles.

OIE tests confirm the expected absence of variation, giventhat i
is the exact same code being generated for both the old amethe
TLS conventions.

RIE remains nearly identical in terms of performance on IA-
32 for the minimum-state tests, as expected. For the maximum
state tests, the new method begins to show improvements, as i
enables the compiler to preserve more state across the TIIsS ca
that, in these tests, end up being relaxed, but the advaméage
mains since the linker cannot recover the performance lossta
register spilling and reloading. The performance loss & @#-bit
minimum-state address RIE probably indicates there mighiei-

ter instruction sequences we could use for relaxation.

SGD is where the new method really shines. That is no surprise,
since it's exactly the situation that the new method is desiigto
improve, and fortunately also the most common situationoidec
generated for dynamic libraries that accesses threadisadables.
Absolute reductions in clock cycles are consistent betviretennal

and external timing in 32-bit mode, where the calling comigers
optimization plays a less significant role; in 64-bit modes &bso-
lute reductions in clock cycles are consistent if you corapasults
among the minimume-state tests, or among the maximum-stat® o
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Figure 3. SGD load test results with internal timing. Figure 5. DGD load test results with internal timing.
70 0T
3.4x 1
60 [ 5.0x 1.6x 60
1.6X 1.4x
50 50—+ 1.5x 1.2x
1.2x
40+ 40 3
............... 10.0x SX 1 .0x
30+ 24.0x 35¢ | 6x 30 2.3x L8| 17x
3.6x 5 1.7x
20+ 4.5x o1 1.1x
2.6X 1.1x
104+ 10+
0 0

Figure 4. SGD addr test results with internal timing.

DGD shows that performance is improved significantly even in
the case that the new method regarded as the slow case yCiearl
64-bit mode, most of the savings stem from the ability to etdin
state in registers, as shown in the comparison between mimim
and maximum-state in the internal timing column, where tee n

Figure 6. DGD addr test results with internal timing.

The implementation is readily available for widely-usedlCP
types, under Free Software licenses that enable any litboaigke
advantage of this novel technique.

Some open questions remain to be answered in future work:
whether there are relaxation sequences that could makeetlie n
relaxed code at least as fast as the old one on AMD64, and faste

model remains unchanged upon the growth in state and the oldon 1A32; whether returning an offset instead of an addresmfr

model slowed down by a significant amount. In the externahim
column, the overhead from having to preserve all calleedav
registers that are used is noticeable in the maximum-stitenn,
but not as much as in the old model. In 32-bit mode, the alitity
check whether the DTV is up-to-date without setting up theTGO
pointer is likely what brings most of the benefit.

Cmb essentially only confirms the results above, not offering an
obvious new insights.

5. Conclusion

The proposed optimization improves performance of access t
thread-local variables from dynamic libraries by a big niargpr
initially-loaded libraries, without any data size penadtyd most
often with code size reductions. For dlopened librariesrdhare
still performance advantages, but to a lesser, yet stiliSaant
extent, and there are data size penalties.

It should be highlighted that the performance gains frorg tez
locations, by avoiding relocation processing at load tiarel from
code size reductions, by improving the instruction cachedie,
have not been taken into account at all in the micro-bencksnar
exposed here.

the specialized _t1s_get_addr calls does indeed help improve
performance; whether enabling the specializations tolsolone

or two registers, which would enable the dynamic-case fath p

to save fewer or even no registers, would cause a measurable
decrease in performance in the more common cases; how much of
a performance improvement could have been obtained oveldhe
model by using the same call sequences, and only modifyiag th
run-time so as to compute relocations differently, and ryaatj
__tls_get_addr to cope; how much benefit would be obtained
by implementing DTV compression; how well the optimizaton
described here do on other architectures.
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